An optimal kernel feature extractor and its application to EEG signal classification

نویسندگان

  • Shiliang Sun
  • Changshui Zhang
چکیده

An optimal nonlinear feature extractor for extracting energy features under two different kinds of patterns is proposed. It carries out the simultaneous diagonalization of two signal covariance matrices in a high-dimensional kernel transformed space, and thus promises to find features which are more discriminant, especially when the original data have nonlinear structures. Two operations, whitening transform and projection transform, are involved in kernel spaces. The mechanism of the feature extractor and its effectivity are shown with simulation data and the classification task of real electroencephalographic (EEG) signals. r 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Feature Optimize and Classification of EEG Signals: Application to Lie Detection Using KPCA and ELM

EEG signals had been widely used to detect liars recent years. To overcome the shortcomings of current signals processing, kernel principal component analysis (KPCA) and extreme learning machine (ELM) was combined to detect liars. We recorded the EEG signals at Pz from 30 randomly divided guilty and innocent subjects. Each five Probe responses were averaged within subject and then extracted wav...

متن کامل

Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform

In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2006